

2

Block Audit Report Team received the Token.sol file for smart contract security audit
of the on October 12, 2022. The following are the details and results of this smart
contract security audit:

Project Name: Ushark

Link Address:
https://bscscan.com/address/0xc6893701753bd185f6ed3ff204fd3d76f19a50ea#c
ode

The audit items and results:
(Other undiscovered security vulnerabilities are not included in the audit
responsibility scope)

Audit Result: Passed
Audit Number: BAR0027121072022
Audit Date: October 14, 2022
Audit Team: Block Audit Report Team

https://bscscan.com/address/0xc6893701753bd185f6ed3ff204fd3d76f19a50ea#code
https://bscscan.com/address/0xc6893701753bd185f6ed3ff204fd3d76f19a50ea#code

3

Table of Content

Introduction .. 4-5
Auditing Approach and Methodologies applied ... 4
Audit Details ... 5

Audit Goals .. 6-7
Security ... 6
Sound Architecture ... 6
Code Correctness and Quality .. 6

Audit Results .. 6
High level severity issues ... 6
Medium level severity issues .. 6
Low level severity issues .. 6
Issues Checking Status .. 7

Manual Audit: ... 8-9
Critical level severity issues ... 9
High level severity issues ... 9
Medium level severity issues .. 9
Low level severity issues .. 9
Owner Privileges ... 9

Automated Audit .. 10
Remix Compiler Warnings ... 10

Disclaimer ... 11

Summary .. 12

4

Introduction
This Audit Report mainly focuses on the extensive security of Mezmerize Game Smart
Contracts. With this report, we attempt to ensure the reliability and correctness of the smart
contract by complete and rigorous assessment of the system's architecture and the smart
contract codebase.

Auditing Approach and Methodologies applied
The Block Audit Report team has performed rigorous testing of the project including the
analysis of the code design patterns where we reviewed the smart contract architecture to
ensure it is structured along with the safe use of standard inherited contracts and libraries.
Our team also conducted a formal line by line inspection of the Smart Contract i.e., a manual
review, to find potential issues including but not limited to;

 Race conditions
 Zero race conditions approval attacks
 Re-entrancy
 Transaction-ordering dependence
 Timestamp dependence
 Check-effects-interaction pattern (optimistic accounting)
 Decentralized denial-of-service attacks
 Secure ether transfer pattern
 Guard check pattern
 Fail-safe mode
 Gas-limits and infinite loops
 Call Stack depth

In the Unit testing Phase, we coded/conducted custom unit tests written against each
function in the contract to verify the claimed functionality from our client.
In Automated Testing, we tested the Smart Contract with our standard set of multifunctional
tools to identify vulnerabilities and security flaws.
The code was tested in collaboration of our multiple team members and this included but
not limited to;

● Testing the functionality of the Smart Contract to determine proper logic has been
followed throughout the whole process.

● Analyzing the complexity of the code in depth and detailed, manual review of the code,

5

line-by-line.
● Deploying the code on testnet using multiple clients to run live tests.
● Analyzing failure preparations to check how the Smart Contract performs in case of

any bugs and vulnerabilities.
● Checking whether all the libraries used in the code are on the latest version.
● Analyzing the security of the on-chain data.

Audit Details
Project Name: Mezmerize Game
Website: https://ushark.io/
Twitter: https://twitter.com/usharktoken
LinkedIN: https://www.linkedin.com/in/utility-shark-token-117616224/
Facebook: https://web.facebook.com/profile.php?id=100074181520893
Discord: https://ushark.io/#utilitysharktoken#0078
Instagram: https://instagram.com/usharktoken?utm_medium=copy_link
Telegram: https://t.me/usharkGlobal
Languages: Solidity (Smart contract)
Platforms and Tools: Remix IDE, Truffle, Ganache, Mythril, Contract Library, Slither,
DappTools, Echidna, Etheno

https://ushark.io/
https://twitter.com/usharktoken
https://www.linkedin.com/in/utility-shark-token-117616224/
https://web.facebook.com/profile.php?id=100074181520893
https://ushark.io/#utilitysharktoken#0078
https://instagram.com/usharktoken?utm_medium=copy_link
https://t.me/usharkGlobal

6

Audit Goals
The focus of the audit was to verify that the Smart Contract System is secure,
resilient and working according to the specifications. The audit activities can be
grouped in the following three categories:

Sound Architecture

Evaluation of the architecture of this system through the lens of established smart
contract best practices and general software best practices, standard software
design principle, design patterns and practices.

Code Correctness and Quality

A full review of the contract source code. The primary areas of focus include:
● Accuracy
● Readability
● Usability vs Security
● Sections of code with high complexity
● Quantity and quality of test coverage

Issue Categories

Every issue in this report was assigned a severity level from the following:

Critical Severity Issues

Issues of this level are critical to the smart contract’s performance/functionality and
should be fixed before moving to a production environment.

High level severity issues

Issues on this level are strongly suggested by the team to be fixed before moving to
the production environment.

Medium level severity issues

Issues on this level could potentially bring problems and should eventually be fixed.

Low level severity issues

Issues on this level are minor details and warnings that can remain unfixed but would
be better fixed at some point in the future.

7

Issues Checking Status

S.No. Issue description Checking status

1 Compiler warnings. Passed

2
 Race conditions and Reentrancy. Cross-function
race conditions. Passed

3 Oracle calls. Passed
4 Timestamp dependence. Passed

5 DoS with Revert. Passed
6 DoS with block gas limit. Passed
7 Methods execution permissions. Passed

8 Economy model. Passed
9 The impact of the exchange rate on the logic. Passed

10 Malicious Event log. Passed

11 Scoping and Declarations. Passed
12 Uninitialized storage pointers. Passed
13 Arithmetic Operations accuracy. Passed

14 Design Logic. Passed
15 Cross-function race conditions. Passed
16 Safe usage for Open Zeppelin module. Passed

17 Fallback function security. Passed
18 Send & receive ether. Passed
19 Zero race condition approval attacks. Passed

20 Short address attack. Passed
21 Owner’s authority to freeze. Passed
22 Attempt to block ether flows. Passed

23 Redundant inheritance check. Passed
24 Silent overrides of mapping structs. Passed
25 Function state mutability. Passed

26 Unnecessary conversion of type. Passed

8

Manual Audit:

For this section the code was tested/read line by line by our auditors. We used Remix
IDE’s JavaScript VM, Truffle and testnet Kovan to test the contract functionality in a
simulated environment.

Files in scope

https://github.com/MezmerizeGame/SmartContract/blob/main/MZEGAME.sol

File 1 of 1 : Token.sol Passed

https://github.com/MezmerizeGame/SmartContract/blob/main/MZEGAME.sol

9

Audit Results

Critical Severity Issues
No critical severity issues found.

High Severity Issues
No high severity issues found.

Medium Severity Issues
No medium severity issues found

Low Severity Issues
Issue File Type Line Description
#1 Main Contract doesn’t

import npm
packages from
source (like
OpenZeppelin
etc.)

- We recommend importing all
packages from npm directly
without flattening the contract.
Functions could be modified or
can be susceptible to
vulnerabilities

#2 Main Floating Pragma - The current pragma Solidity
directive is “^0.5.0". Contracts
should be deployed with the
same compiler version and
flags that they have been tested
thoroughly. Locking the pragma
helps to ensure that contracts
do not accidentally get
deployed using other versions.

#3 Main Old Compiler
Version

- The contract uses an old
compiler version which is not
recommended because old
versions are prone to known
attacks and vulnerabilities.

10

#4 Main Missing Zero
check

138,170 There is no zero address
validation in the transfer
functions which may lead to
loss of user funds if the users
send the funds to the zero
address by accident.

#5 Main Owner can drain
tokens

212 Owner can pass the native
token address in the function
and drain/withdraw the
complete balance of the smart
contract.

Ownership privileges
The contract is highly centralized and if the owner’s keys are somehow compromised then it
can bring down the whole project. We advise to keep the private keys secure and use a
multi-sig wallet. Moreover, if the ownership is renounced without proper research and
information, the changes in the contract will be irreversible.

Owner’s Address: 0x5a4F1BAC9Ea8272d34296a1736740877C6C5C9Fe

Issue File Description
#1 Main • The owner can withdraw stuck tokens and also the native tokens

Automated Audit

No major issues were found. Some false positive errors were reported by the tools.
All the other issues have been characterized above conferring to their level of
severity.

11

Disclaimer

This is a limited report on our findings based on our analysis, in accordance with good industry
practice as at the date of this report, in relation to cybersecurity vulnerabilities and issues in
the framework and algorithms based on smart contracts, the details of which are set out in
this report. In order to get a full view of our analysis, it is crucial for the client to read the full
report. While we have done our best in conducting our analysis and producing this report, it is
important to note that the client should not rely on this report and cannot claim against us on
the basis of what it says or doesn’t say, or how we produced it, and it is important for the client
to conduct the client’s own independent investigations before making any decisions. We go
into more detail on this in the below disclaimer below – please make sure to read it in full.

By reading this report or any part of it, the client agrees to the terms of this disclaimer. If the
client does not agree to the terms, then please immediately cease reading this report, and
delete and destroy any/all copies of this report downloaded and/or printed by the client. This
report is provided for information purposes only and stays on a non-reliance basis, and does
not constitute investment advice. No one/ NONE shall have any rights to rely on the report or
its contents, and BlockAudit and its affiliates (including holding companies, shareholders,
subsidiaries, employees, directors, officers and other representatives).
(BlockAudit) owes no duty of care towards the client or any other person, nor does BlockAudit
claim any warranty or representation to any person on the accuracy or completeness of the
report. The report is provided "as is", without any conditions, warranties or other terms of any
kind except as set out in this disclaimer, and BlockAudit hereby excludes all representations,
warranties, conditions and other terms (including, without limitation, the warranties implied
by law of satisfactory quality, fitness for purpose and the use of reasonable care and skill)
which, but for this clause, might have effects in relation to the report. Except and only to the
extent that it is prohibited by law, BlockAudit hereby excludes all liability and responsibility,
and neither the client nor any other person shall have any claim against BlockAudit, for any
amount or kind of loss or damage that may result to the client or any other person (including
without limitation, any direct, indirect, special, punitive, consequential or pure economic loss
or damages, or any loss of income, profits, goodwill, data, contracts, use of money, or
business interruption, and whether in delict, tort (including without limitation negligence),
contract, breach of statutory duty, misrepresentation (whether innocent or negligent) or
otherwise under any claim of any nature whatsoever in any jurisdiction) in any way arising
from or connected with this report and the use, inability to use or the results of use of this

12

report, and any reliance on this report.

The analysis of the security is purely based on the received smart contracts alone. No
related/third-party smart contracts, applications or operations were reviewed for security. No
product code has been reviewed.
Note: The statements made in this document should not be interpreted as investment or legal
advice, nor should its authors be held accountable for decisions made based on them.
Securing smart contracts is a multistep process. One audit cannot be considered enough. We
recommend that the UShark team put a bug bounty program in place to encourage further
analysis of the smart contracts by other third parties.

13

Summary

Smart contracts received in file named: “Token.sol” does not contain any high severity
issues!

Note:
Please read the disclaimer above and note, the audit claims NO statements or
warranties on business model, investment advice/ attractiveness or code
sustainability. This report is provided for the only set of contracts mentioned in the
report and does not claim responsibility to include security audits for any other
contracts deployed by Owner.

14

